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This paper presents the first application of semiclassical methodology to the calculation of vibrational energy
relaxation (VER) rate constants in condensed phase systems. The VER rate constant is treated within the
framework of the LandauTeller formula and is given in terms of the Fourier transform, at the vibrational
frequency, of the forceforce correlation function (FFCF). Due to the high frequency of most molecular
vibrations, predictions based on thkassicalFFCF are often found to deviate by orders of magnitude from

the experimentally observed values. In this paper, we employ a semiclassical approximation for the quantum-
mechanical FFCF, that puts it in terms of a classical-like expression, where Wigner transforms replace the
corresponding classical quantities. The multidimensional Wigner transform is performed via a novel
implementation of the local harmonic approximation (LHA). The resulting expression for the FFCF is exact
att = 0, and converges to the correct classical limit wher> 0. Quantum effects are introduced via a
nonclassical initial sampling of both positions and momenta, as well as by accounting for delocalization in
the calculation of the force at= 0. The application of the semiclassical method is reported for three model
systems: (1) a vibrational mode coupled to a harmonic bath, with the coupling exponential in the bath
coordinates; (2) a diatomic coupled to a short linear chain of helium atoms; (3) a “breathing sphere” diatomic
in a two-dimensional monatomic Lennard-Jones liquid. Good agreement is found in all cases between the
semiclassical predictions and the exact results, or their estimates. It is also found that the VER of high-
frequency molecular vibrations is dominated by a purely quantum-mechanical term, which vanishes in the
classical limit.

I. Introduction vibrational mode and the relevant accepting modes is permissible
whenhw/kgT < 1. (2) In these cases, VER is fast due to the
high density of accepting modes with matching frequencies, and
can therefore be directly observed on the time scale accessible
to classical MD simulations.

Unfortunately, low-frequency vibrations are the exception
rather than the rule, and most molecular vibrations are charac-

One of the most fundamental ways in which the environment
affects solution-phase molecular dynamics (MD) is via vibra-
tional relaxation. A typical situation involves energy relaxation
of an excited vibrational mode, in a solute molecule, by energy
transfer to other intermolecular and/or intramolecular accepting
modest—10 The rate of vibrational energy relaxation (VER) X . .
provides a sensitive probe of intramolecular dynamics and terized by h|ghfr.equ'enC|.es, such thm./kBT» 1eyen at r.oom.
solute-solvent interactions, which are known to have a crucial ‘€MPerature. This situation has two important implications:
impact on other important properties, such as chemical reactivity, *VER can become very slow, due to the very low density of
solvation dynamics, and transport coefficients. accepting modes with matchlng frequenues,_and therefqre

VER rates have been measured by time-domain pulsed lase/c2nNnot be simulated on the time scale accessible to classical
techniques in a variety of hosts, including crystals, liquids, super- MP_simulations (e.g., all neat diatomic liquids exhibit VER
critical fluids, glasses, and proteifis® The observed VER lifetimes of microseconds or longfé).
lifetimes cover a wide range of time scales, extending from A classical description of the relaxing vibrational mode and
subpicoseconds to minutes, and reflect a rich variety of relevant accepting modes becomes inappropriate and has to be
intermolecular and/or intramolecular pathways. replaced by a consistent quantum treatment of both.

Most recent theoretical studies of VER have been based on It should be noted that VER via direct energy transfer to the
either one of the following approaches: (i direct approach solvent is usually slower than intramolecular energy redistribu-
which is based on nonequilibrium MD simulations; (@) tion (IVR) processes in polyatomic solut®dn such cases, VER
perturbative approachwhich is based on extracting the foree to the solvent is usually preceded by a sequence of solvent-
force correlation function from equilibrium MD simulations. assisted IVR steps. At each step, the solute damps the smallest

The direct approachessentially mimics the experimental possible amount of energy into the solvent, until the intra-
measurement of VER. It is based on performing nonequilibrium molecular mode with the lowest frequency is reached. This
classical MD simulations, starting with an excited vibrational gateway mode then damps its energy directly into the solvent.

mode, and following its relaxation to equilibriutf:44 This ~ Thus, in polyatomic solutes, the effective frequency may be
approach is particularly useful in the case of low-frequency lower than that of the mode which is originally excited, such
vibrational modes and/or high temperaturkefsT < 1), for that VER is faster and quantum effects are less pronouttced.

the following reasons: (1) A classical description of the relaxing ~ The perturbatie approactprovides an alternative framework
for the calculation of VER rate constants of high-frequency
* Corresponding author. E-mail: eitan@umich.edu. vibrations!10.4647|ts starting point is based on the following
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general guantum mechanical Hamiltonian of a harmonic vibra-
tional mode coupled to a bath of accepting modes [here, as in
the rest of this paper, we use boldface symbols for vectors, and
capped symbols (e.d\) for operators]:

H=H,+ A, + Hy= Hy + Hyg 1)
Here
~ p° 1 o
A=, T 3100 @)

is the Hamiltonian of the vibrational mode under investigation
(@, p, u, andw are the corresponding coordinate, momentum,
reduced mass and frequency, respectively)
N (piy2 N (|5(i) 2
—+VUQ ©)
=12m0

A

Hy

S 2m®

+(QY, ...,QN) =

is the Hamiltonian of the bath, which consists of the other
intermolecular and intramolecular degrees of freed@n=
QW, ...,QN), P = (PW, ..., PMN), {MO}, andV(Q) = V(Q®),

..., QN are the corresponding coordinates, momenta, masses
and potential energy, respectively], and

- gF@QY, ... QM) = - &R 4)

is the system-bath coupling term. The latter is assumed to be
linearized in the vibrational coordinat§, which implies that
VER takes place via the emission of one vibrational quantum.
For simplicity, we assume that the force on the vibrational mode,
F(Q), is a function of only the bath coordinates (the treatment
of kinetic coupling terms, which involve momentum-dependent
forces, is deferred to the following paper). It should be noted
that F(Q) may be, and often is, a highly nonlinear function of

Hbs_

the bath coordinates. The highly nonlinear nature of the force T~ — (Bhool2)
and the large frequency mismatch between the vibrational mode !

and the majority of the accepting modes, implies that the bath
absorbs the energy via a multiphonon-like process.

Given the general Hamiltonian above, the perturbative
approach is based on the following three assumptionswéak
system-bath couplingto the extent that first-order time-
dependent perturbation theory applies; §2paration of time
scales such that the VER lifetime is much longer than the
correlation time of the bath-induced force; {Bg rotating wae
approximation (RWA)which amounts to the removal of rapidly
oscillating terms and decoupling of population relaxation from
phase relaxation. Under these conditions, the Bloch Redfield
theory (BRT) leads to the following master equation for the
vibrational populationg84&-58

d

apn = kn~—n+1pn+1 + knhn—lpn—l - (kn+1~n + kn—1~—n)Pn
(5)
Here
ni == LO@)©)
Here, = (kgT)7%, and
Clw) = [~ dte'C() (7)

is the Fourier transform (FT) of the free bath forderce
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correlation function (FFCF)

C(t) = [BF (t)oF [ (8)
where[Ag = Trle #MA]/Z,, Z, = Trje M), OF = F — [F(,
and
OF (1) = dMhofeHuth 9)

Thus, eq 6 puts the population relaxation rate constants in terms
of the FT, at the vibrational frequency, of the quantum-
mechanical FFCF, which is evaluated with the vibrational mode
frozen at its equilibrium positiong(= 0).

As is well-known, the population dynamics in eq 5 leads to
an exponential decay of the vibrational ene?g$?6°

<)

d . d 1 .
—BAE= S (n+ 1/2%0—P. = — —OBAO (10
a ( n dt " T, ° (10)

n=! 1

HeredHs = Hs — Hd4, and g = hw/2 + hol(€ — 1) is
the vibrational energy at thermal equilibrium. The central
guantity in eq 10 is the VER rate constanfl{Avhich is given

by the Landau-Teller (LT) formulal®46.61

1 (11)

It should be noted that althoud(t) is complex, i.e.C(t) =
Cr(t) + iCy(t) with Cgr(t) andCi(t) the real and imaginary parts,
respectively, its FTC(w), is real. Taking advantage of the
general symmetries satisfied 6)(t), namely C(—t) = C*(t)
andC(—w) = e #C(w), the VER rate constant in eq 11 can
also be expressed in terms of either the real or imaginary parts
of C(t):

tanhBhw/2 °°
1_ Mg J5 dt cos@t)Ca(t) =

s
Ghol2) J. dtsin@tC,(t) (12)
Thus, C(w) can be evaluated from eith€X(t), C,(t), or Cg(t).

One difficulty encountered in practical applications of eqs
11 and 12 has to do with the fact that extracting the very small
high-frequency Fourier components of the FFCF can become
extremely difficult due to statistical noise which accompany real-
life simulations. This difficulty is often dealt with by using an
extrapolation of the exponential gap law, which usually emerges
at low frequencies, to much higher frequen&g& A similar
approach is to combine a short time expansion of the FFCF
with a parametrized ansatz that exhibits an exponential gap law
behavior at high frequencies, and whose FT can be calculated
analytically5564-71

Another fundamental difficulty is associated with the fact that
the input to eqs 11 and 12 consists of thentum-mechanical
FFCF, rather than thelassicalFFCF. Unfortunately, the exact
calculation of real-time quantum-mechanical correlation func-
tions for general many-body systems remains far beyond the
reach of currently available computer resources, due to the
exponential scaling of the computational effort with the number
of degrees of freedom (DOF3.The most popular approach for
dealing with this difficulty is to first evaluate the FT of the
classical FFCF, and then multiply the result by a frequency-
dependenguantum correction factofQCF), Ag(w):1-47:60.73-86

Clo) ~ Ay(@)C%(w)

(13)
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TABLE 1: Commonly Used Quantum Correction Factors

name Ag(w) assumption refs
standard 2/(H e Phe) ReC(t)] ~ CCI(t) 1, 80, 82
harmonic Bhwl(1 + e Fhe) one-phonon process in harmonic bath 60, 79, 80, 81
Schofield ghhol2 C(t) ~ CO(t + ihpI2) 84
Egelstaff (@M2IEw) [, dt 87 CO(y/ 1 + (Bh/2)) C(H) ~ C(VH(t + iphI2)) 47,64, 80, 85,86
harmonic/Schofield \/Agarmonic(w)Agchofieletw) multiphonon process in harmonic bath 73,75,78

Here,Cw) = s, dt €tCC(t), whereCCl(t) = [MFo(t)0F g The LSC-IVR approximation has been recently derived by
is the classical FFCF (3-+[{°' corresponds to averaging over Miller and co-workerd?7.136.142.146149 by linearizing the forwaret

the classical Boltzmann phase space distribution, and the timebackward action in the semiclassitdf*145156-158nitial value
evolution of dFq(t) is governed by classical mechanics). The representatiohi?-133.144159166 expression for a real-time quantum-
important point is thaC!(t) can be evaluated with relative ease mechanical correlation function, with respect to the difference
from classical MD simulations. It should be noted that eq 13 between the forward and backward trajectories. The resulting
amounts to nothing more than a reformulation of the original LSC—IVR approximation for a real time correlation function
problem, since knowledge of the exact QCRg(w), is was found to have the following form:

equivalent to, and as difficult to obtain as, the exact quantum N A

mechanical FFCF. However, educated guessefq@b) can Tf(efﬁHe'HUpBef'HﬂhA) ~

be introduced, which are based on the general properties of 1 - @l ~(Cl)

guantum correlation functions (e.g., detailed balance) and/or the (zﬂh)ff quf dpo(Ae " )ulo:Po)Buda P ) (14)
knowledge of whafg(w) looks like in the very few cases where

it can be obtained explicitly. Table 1 lists some of the more Here,fis the number of DOFgo = (q, -..,q®) andpo = (p{Y,

popular QCFs. However, estimates provided by the various ) are the corresponding coordinates and momenta
QCFs can differ by orders of magnitude, and particularly so

when high-frequency vibrations are involv&d>83For example, _ —ipoA/A Aoy

Egorov et al. have recently estimateddfor O, in liquid Oy, AulboPo) fdAe (G, + A/2] Algo — A/2L (15)

at 70 K, and found the following spread of values that were s the Wigner transform oh [with A = (A®), ..., A()] 167,168

based on different QCFs: 0.00095 (standard), 0.015 (harmonic), 4 qﬁc" _ qu')(qO po) and pEC') = p{®(qo,p0) are propagated
h t 1

270 (Egelstaff), and 4030 (Schofield). (The experimental | ssically with the initial conditiongo andpo. We have recently

» . o AN
value under these conditions isTi/= 360 s.) Similar shown that the very same approximation can also be derived

disparities have qlso been observed in ot_her systéfis. by linearizing theexactreal-time path integral expression for
Several strategies have been proposed in order to address th e correlation functioR® More specifically, we showed that

chgllenge (?lf prowdlng an effect;qved, (;ompultanlon_ally feasible, j; g possible to derive eq 14 without explicitly invoking the
and versatile approximate method for calculating quantum- <o iclassical approximation.

mechanical real-time correlation functions. These methods are It should be noted that the Wigner representation has been

based on various approaches, including a mixed quantum-g.sidered by many workers in the past as a convinient starting

i —92 i i in@6,93-99 i N . . .
clalssmelll trgatmer??, analytligi(li:zgntmuanoﬁ, q centro||_d point for developing approximate treatments of quantum statics
molecular dynamics (CMDY; quantum mode coupling 5 gynamicds7.168.176174 | fact, the LSC-IVR approximation

theory;**"12°and the semiclassical (SC) approximatiéf:’14° of eq 14 can be obtained from the general theory of Wigner

These methods have been applied, with relative success, 0 gjisyribytions via the following straightforward procedure:
rather extensive set of systems and processes. However, the

application of these methods to VER in condensed-phaseTr(e—ﬁﬂeiﬂt/hlge—iﬂt/hA) —

systems has been rather limited. A CMD-based approach for o o
calculating VER rate constants has been pursued by Voth and quofdpO [AefﬁH]W(qo,pO)[e'Ht/hBef'HUh]W(qo,pO)

co-workerd? and Poulsen and co-workei!20.121The applica- (27h)"

tion of CMD to VER is complicated by the fact that the force 1 N )

in the FFCF is highly nonlinear in the bath coordinates. Hence, ~ ~ %Id% Jdpo[Ae ] (doPBw(G”p{™)
these applications of CMD for calculating the FFCF have been (27h) (16)

based on additional approximations whose validity is not always

clear. Applications of the CMD-based approach to model The first equality in eq 16 is exact, and the second is based on
systems have been rather successful, although further tests wilthe & — 0 limit of the equation of motion of [B/Be-HvA],,,.

be required in order to establish the general applicability of this However, the above procedure may appear somewhat arbitrary
approach. Rabani and Reichman have proposed a method whiclin the sense tljale{e‘ﬁ'j]w(qo,po) is treated exactly to all orders

is based on computing the coefficients in the short time of A, while [€H"Be P,y is replaced by itdt — O limit. In
expansion of the FFCF via imaginary-time path integral this respect, the derivation via the linearization of the forward
simulations’? This method has been applied, with relative backward action appears to provide a more consistent route to
success, to the case of exponential coupling to a harmonic batheq 14.

Here too, further testing on more realistic systems will be  The major advantage of LSEVR has to do with its
required in order to establish the general applicability of this computational feasibility (although the computation of the

approach. Wigner transform in systems with many DOF is not tri\#d).
In the present paper, we consider the application of the The approximation also has the attractive features of being exact
linearized-semiclassical initial-value-representation (E9¢R) at the initial time, at the classical limit, and for harmonic

approximation for calculating the quantum-mechanical FFCF. systems. Its main disadvantage has to do with the fact that it
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can only capture quantum dynamical effects that arise from followed by a transformation to the normal mode representation:
short-time interferences between the various trajectories (the
longer time dynamics is purely classic#l§.However, it should

be noted that in condensed phase in general, and in the case of —‘ [QY — QMIIQY — Q" =
high-frequency VER in particular, the quantities of interest are SIS BQ(k)aQ(') Q=Q,

often dominated by the short-time dynamics of the correlaton 1 N N «/_ \/—
functions. 5 ZZWM( MYQY — QM (VMUIQY — Q")) =
K=1(=
1o (2roKy2
> 2@V @22)
k=

1NN Ry

In the present paper, we introduce a general semiclassical
theory of VER in the condensed phase which is based on the
LSC—IVR approximation. A general LSEIVR-based method
for calculating VER rate constants in condensed-phase systems
is described in section 2. The application of the method is
demonstrated on several model systems in section 3. The result$" €4 22

are discussed and summarized in section 4.
Il. A Semiclassical Theory of Vibrational Energy
Relaxation

The LSC-IVR approximation, eq 14, of the quantum-
mechanical FFCF, eq 8, assumes the following form:

C(t) ~
zib (Z;)N [dQy [dPy[0Fe ™],,(QuPoF Q" P
(17)
Here
OF QP = oF( Q) (18)
and

[5|Ee_ﬂﬂb]w(Qo-Po) =
JdAe P, + Al2] e P IQ, — AI2BF(Q, + Al2)
(19)

A direct calculation of the correlation function in eq 17, in the

case of an anharmonic many-body system, would require the
calculation of the multidimensional Wigner phase-space integral

in eq 19. Unfortunately, it is extremely difficult to perform this
calculation via conventional Monte Carlo (MC) techniques, due
to the oscillatory phase factor, 8", in the integrand (the
origin of this problem is the same as that of the “sign-problem”
encountered in the calculation of real-time path integrals).
One way of overcoming this problem is by introducing an
approximation that will allow us to perform the integral in eq

19 analytically. To this end, consider the quadratic expansion

of the potential energy of the batk(Q) (cf. eq 3), around an
arbitrary pointQ = Qq:

- (K) (Ky
VQAV@)+ S | 17—+

& 5Q¥eq

1NN

FaY,
22w ®_ o ®ro® — o0 (20
ZI;;aQ(k)aQ(I)‘Q_QO[Q QllQ Q"1 (20)

The quadratic term in eq 20 is next written in terms of mass-

weighted coordinates{vVM®¥[Q®W — Q,®]}, and Hessian
matrix elements

2
1 PV

7, = ‘
b VmOMmO 8Q%8Q0 o=q,

(21)

(23)

Q= iﬂ,k@[@“ - Q)

are the mass-wighted normal mode coordinates,{#¥)?}

are the eigenvalues of the Hessian matfis }. Rewriting

the linear term in eq 20 and the kinetic energy of the bath in
terms of the normal mode coordinates and momenta yields the
following local harmonic approximation (LHA) of the quantum-
mechanical bath Hamiltonian arou@ = Qq:

N 1. N 1 N
Fo 3 PR+ VIQ) + 5 G Qn' 0 5 (@)1 T
5 k= k=

(24)
Here
N
PYQy) = ZTI,k(M(I))_l/ZIS(I) (25)
and
N oV
G(k) — T M(I) =12 _~ " 26
PQ) = 3T an\Q_QO (26)

To proceed, we rewrite eq 19 in the following way:

[6Fe"™,,(QePo) = [@gle "1Qo [ dAe ™ x
@, + Al2jeP1Q, — A2
[Qo|e_ﬂHb|Q0D

DcSF(QO + A2) (27)

We refrain from applying the LHA to th&D,|e | Qqfactor
preceding the integral (this is essential if the resulting ap-
proximation is to yield the correct classical limit and coincide
with the exact result at = O—see below). However, we do
apply the LHA of eq 24 to the ratid@o + A/2|e #H|Qo —
AI2[IQ e #M|Qoll It is important to note that the LHA involves

a quadratic expansion only in terms Af while any anharmo-
nicity in terms ofQq remains fully accounted for. With the help
of the following identity C is a proportionality constant that
does not depend o@; and Q)

AP 6 e o _Q 1
[Q,|e 1Q, eXF‘[ 2h sinh(BhQ)

[coshGhQ)(Q,2 + Q) — 2Q1Qz]} (28)

one can then show that, within the LHA
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@, + A2e P|Q, — A/20) NG ,_ _OF
: ~expl S a®(A%2)] (29) Fe="®
[@Qole Q0] = "
0 0

o OF
(L

— (33)
0=, BQ(")BQ(')‘Q—QO

and

where
N N N
'EL — Z(M(l))71/2T|,kF'; |~:[<f| — ZZ(M(i)M(i))fllz-I-i’I-I-jYkFi,v,j
= =
(34)

N
Ag) = ZTkJVM(k) A® (30)
=

Substituting the approximations in eqs 29 and 32 into eq 19,

and
changing the integration variables frofd®} to {A¥}, and
b . performing the Gaussian integral ofex™} analytically yield
ol = ?CothWhQ“)/Z] (31) the following result:
_ _ 12 (POy?
ol in eq 31 is real and positive whe@f)]?2 > 0. However, it an _\Un,

N
& —pH —pH

should be remembered that some of the normal-mode frequen-[éF(a ! Tw = [Qole ’ b|Q0EI_l 0. ) X 2 0)
cies may be purely imaginary@@]2 < 0). In such a cas€0 =M a pa
in eq 31 can be replaced 20, whereQ0) is real and positive [6F(Qo) + D(Qo,Pn 0] (35)
in the latter. In such a caskqd) — QUcot[fhQ0)/2], which is
still real and positive as long aghQ® > x. In actual Here
applications, we found that negative valuesfare very rare S =, = 50 o)
(typically showing up less than once per 1000 randomly sampled N FiPo N Fik N FiiPno Pro
configurations). In the applications reported below, it was D(Qo:Pro) = — 'Z ® + Z ® - Z 2 ®0)
assumed that such negative valuesx®fcan be discarded. Flha 4o KFE12R%a

The LHA discussed above is similar to that recently proposed (36)
by Ovchinnikov et al. in ref 143. However, the manner in which
it is implemented is rather different. More specifically, the LHA
is used in ref 143 for calculating the off-diagonal element of
the Boltzmann operatofQ,le #"|QyuL) whereas in our case it
is used in order to calculate thratio of the off-diagonal and
diagonal elements of the Boltzmann operai®g + A/2|e#|Qq

Substituting eq 35 back into eq 17 and changing the
integration variables frorﬁPE,k)} to {PS%} then lead to the final
form of our approximate expression for the quantum-mechanical
FFCF:

r | 10) |e—ﬂﬂb|Q 0 N 1/2

— AJ2[[Qo|e M| Qo(cf. eq 29). These two versions of the c ~ [d 0 0 dP 1
LHA coincide in the case of a fully harmonic system, but are O~ f Qo 7z f n,0 rl 0)p2 x
distinctly different otherwise. In fact, applying the LHA to the o =a
ratio gives rise to several advantages: (Pﬂ,)o)2

« The approximation that we will obtain below for the FFCF exp— ——|[0F(Qp) + D(Qo,Pn,o)]éF(Qgcn) (37)
will reproduce the exact classical limit whén— 0, which A2V
would not have been the case if we implemented the LHA as ) ) ]
in ref 143. [Note that the Jacobians involved in the two changes

« The approximation that we will obtain below for the FFCF  ©f Nlntegratlon varlal:;‘Ies,A — An andl Po — Pno, are
will be exact at timet = 0. This would not have been the case ([liex M®)~*2 and (1=, M®)¥2 respectively, and therefore
if we utilized the LHA as in ref 143. This may be important ~cancel each other out]. Below, we will refer to the approximation
since the high-frequency FT components of the FFCF are €mbodied by eq 37 as the LHA.SC—IVR approximation.
typically rather sensitive to its behavior at short times. As noted above, eq 37 is exact at time= 0. To see this,

« Our approach avoids the LHA in the evaluation of note that the integral oveb(Qo,Pno) With respect toPnpo
[Qole#":|Qo(see below). In the final result, the initial positions ~ Vanishes at = 0. The only term left is §F(Qq)]?, which upon
are sampled based @®o|e#|QqL) such that the anharmonic ~ integration overQo yields the exact result:
nature of the potential is fully taken into account (the LHA 1

affects the initial sampling of the momenta though). —fdQO [@,le "™ |Q,IOF(Qy)]? =
To proceed, we will also need to simplify tiedependence b L
of the force, 0F(Qo + A/2). To this end, we assume th#(Qq 1 —BFpr 5 72
+ AJ2) can also be approximated by its quadratic expansion, bedQO Qol € "HOF]IQoM
in terms of A/2, aroundQ = Qq: L
_ Tr(e PoF]?)

NCOAK N N AR AD T e (38)
OF(Q, + A/2) ~ SF(Qp) + ZF'k— + —ZZFQ,——

k= 2 SI= 2 2 The classical limit of eq 37 also coincides with the exact

NA® Non AR classical result. To see this note that, in the classical limit, (1)
— OF(Q) + Bt } SR [Qole o] QollZy — &~V fdQoe™V(), (2) a¥) — 2/Bh? since
0 k; ) ZKZ‘; ki o ©n pRQO < 1, such thaty L (PY)Fh?%al® — B3 (PI)Y2 —
(32) B3 L (PP)22MO, and (3)D(Qo,Pn0), €q 36, vanishes ds —
0, so one is left with averaging over the time correlation of the
Here classical forceséF(Qo)éF(Qt(C')).
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Quantum effects enter eq 37 in several ways: Substituting themaginary partof the FFCF in eq 37, into the
 The initial positions are sampled based on the exact quantumsecond equality in eq 12, is expected to yield a less accurate
probability density approximation. Finally, substituting the complex FFCF in eq
A . 37, into eq 11, is expected to yield an approximation whose
@O|e’ﬁHb|QOD BDO|e7/3H"|QOD quality is intermediate between these two extremes. This trend
ProbQo) = Z = - (39) is indeed observed in the examples considered below.
g fon@o|eiﬂ °|Qo Equation 37 represents the main result of this paper and gives

o rise to the following algorithm for calculating the (approximate)
» The initial (normal-mode) momenta are sampled based on aquantum-mechanical FFCF:

nonclassical probability density 1. SampleQo, with the probability density of eq 39, via an
s , imaginary-time path integral molecular-dynamics or Monte
N[q (PYY? Carlo simulation (PIMD and PIMC respectivel#f176 and
Prob@, o) = |_| - - - (40) calculateF(Qo).
=1\a97k? oAl 2. Perform a LHA around each value @, find the normal-

_ mode frequencie$Q®}, and transformation matrix;Ty}, and
It should be noted th&ta®} and therefore ProB, o) depend evaluate{ a®}, {F(Q)} and{ﬁ'k',.(Qo)}- The Jacobi methdd’
parametrically orQo. has been used for diagonalizing the Hessian matrix in the
« The termD(Qo,Pn,0), €q 36, vanishes at the classical limit applications reported below.
and has no classical analogue. It represents a purely quantum- 3 \C Sample the initial (normal-mode) momen{®®},
mechanical effect that originates from the fact tRadoes not based on the Gaussian probability density in eq 40. "
commute withHy, such that Fe ) = (F)w(e)w. One 4. CalculateQ(®” via a classical MD simulation, for each set

may therefore view this purely quantum-mechanical term as o iyjfia| positions and moment&o andPy o, and time correlate
representing the delocalized nature of the forcé &at0. We SF(Q©) with 5F(Qc) and D(Qo,Pr)
t »In,0)-

will therefore refer to its contribution to eq 37 as thelocalized In the next section, we present the results of calculations based

term . on the application of this algorithm to several model systems.
It should be noted that the above-mentioned quantum effects

includeh to all orders [to this end, note thaf) = Q0 coth-
[BhQ0)/2)/A, eq 31]. This should be contrasted with the quantum
corrections that would result from expanding the quantum-  A. Exponential Coupling to a Harmonic Bath. The first
mechanical FFCF in powers #f to the first nonvanishing order ~ model that we consider involves a bath consisting of uncoupled
(for example, see ref 172). harmonic oscillators of different frequencies

It is also important to note that sin@{Qo,P, 0) is complex,
so is the LHA-LSC—IVR FFCF in eq 37. The latter also G S R
satisfies the fundamental quantum-mechanical ider@{tyt) - Z _)+ M (@) (Q ) (41)
= C*(t), which implies that its Fourier transforr@(w), is real. 2m0
This can be seen by using classical-like time reversal symmetry.
More specifically, any forward classical trajectory that starts at
{Qo,Pno} at time O, and ends dtQ:,P,} at timet, may be
reversedby starting with{Q;, — Pn¢ at timet, propagating
backwardin time, and ending afQo, — Pn,o} at time 0. The where
latter trajectory is in turn equivalent to starting{&o, — Pn.o},
propagatingoackwardin time, and ending afQ-; = Q,Pn 0.0
= — Png. Although the sampling ofPno in eq 37 is R(Q) _ zc(j) 2M¥w Q(j) (43)
nonclassical, the underlying probability density is still an even A
function of Pno, and therefore independent of its sign. This
implies that the contributions of the forward and backward The fact that the exact quantum-mechanical FFCF can be
trajectories have the same statistical weight, and that the termsobtained analytically for this mod®l has established it as a
in the integrand which are even functions Bfo will be convenient benchmark:83 The exact quantum-mechanical
symmetrical with respect to time reversal, while terms which FFCF is given by
are odd functions oP, o will be anti-symmetrical with respect
to time reversal. The real and imaginary parts in eq 37 are even c(t) = 2OV — 1) (44)
and odd functions dPy, o, respectively, such th&(—t) = C*(t).

Finally, it is also important to note that the approximate Where
LHA—-LSC-IVR FFCF in eq 37does notrigorously satisfy P
another fundamental quantum-mechanical identity, namely: B() = IR(ORO)g =

[1l. Applications

and a force which is exponential in the bath coordinates:

FQ =€ (42)

C(—w) = e PrC(w). As a result, substituting the FFCF in eq f doT (w){[n(w) + 1]9—'wt + n(w)é 'wl} (45)
37 into egs 11 and 12 will generally lead to different results.

However, it should be noted that the imaginary part of the FFCF [(w) = (C(k))Zé(w _ w(k)) (46)
in eq 37 emerges from the first-order term in the quadratic Z

expansion of the force in eq 32, whereas the real part originates

from the zero and second-order terms in the same expansionandn(w) = [exp(Bhw) — 1]7L.

Thus, one anticipates that eq 37 provides a better approximation It should be noted that the LSGVR expression in eq 14 is

for Cr(t) in comparison teCi(t), and that the best approximation exact when the system is harmonic, regardless of whether the
for the VER rate constant will be obtained by substituting the operators in the correlation function are linear in the system

real part of the FFCF in eq 37, into the first equality in eq 12. coordinates and/or momenta. Thus, for this model, the FFCF
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Figure 1. Real and imaginary parts of the LHA.SC—IVR FFCF,

for the case of exponential coupling to a harmonic bath. The exact and
classical results are shown for reference. The contributions of the
classical and delocalized initial force terms to the real part are also
shown.

in eq 17 actually coincides with the exact FFCF, eq 44.
However, our LHA-LSC—IVR working expression, eq 37, also
involves an approximate quadratic expansiodB{Qo + A/2)

(cf. eq 32). The above model therefore provides a convenient
way of testing this approximation. In fact, the fact that the
system is harmonic allows for the analytical calculation of the
FFCF in eq 37. The final result can be written in the following
form:

C() ~ (0 - 1) + i€, (1) — 2eHUB(Y| (47)

Here Br(t) and Bi(t) are the real and imaginary parts Bft),
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Figure 2. Semilog plot of the FT of the exact (eq 44), and approximate
(eq 47) FFCF, for the case of exponential coupling to a harmonic bath.
The approximate FT of the FFCF is given as obtained from the full,
real part and imaginary part of the FFCF in eq 47.
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Figure 3. Contributions of the classical and delocalized terms, for the
case of exponential coupling to a harmonic bath. It should be noted
that the contribution of the delocalized term switched sign from negative
at low frequencies to positive at high frequencies. Thus, what is actually
plotted is the logarithm of the absolute value of this contribution. Also
shown are the classical results and predictions based on the harmonic
and Egelstaff QCFs.

of the FFCF is given as obtained from the full, real part and

respectively (cf. eq 45). Interestingly, eq 47 can be obtained jmaginary part of the FFCF in eq 47 [for the exact FFCw)
from the exact eq 44 via a second-order expansion in terms of — 4 1ot cos@)Crt)/(1 + efhoy = — 472t sin(t)C(t)/(1

Bi(t).

The real and imaginary parts of the exact (eq 44) and
approximate (eq 47) FFCF for this model are shown in Figure
1. The calculations were performed with a spectral density of

the following form:
w® oxt] — w?
o ol

[
and for the following values of the parameters= 0.20,a =
3 andfhw. = 4.0. The approximate real and imaginary parts
are found to be in excellent agreement with the exact result.
We also compare the contributions of the two terms that
constitute the real part of the FFCF in eq 47, namely
€BrO)(eBr® — 1) (the “classical term”) and-eB0eB=OIC,2(t)/2
(the “delocalized term”). It should be noted that the first term
arises from the classical forcetat 0, 6F(Qo), while the second
term arises from the purely quantum mechanical t&Qo,Pn o)
(cf. eq 37). Neglecting the latter implies initial sampling based
on the Wigner transform of the Boltzmann operatofe, and
not accounting for delocalization in the evaluation of the force

I'w) =24

(48)

— e fhw)]. As expected, the best agreement with the exact result
is obtained when the FT is calculated from the real part of the
FFCF in eq 47. The agreement is excellent in this case, and the
approximation essentially coincides with the exact result.
Deviations from the exact result are observed when the full
FFCF is used, and even more so when the imaginary part of
the FFCF is used. However, even then, the predictions are found
to be in very good agreement with the exact results.

In Figure 3, we compare the contributions of the above-
mentioned classical and delocalized contributions to the FT of
the FFCF (as obtained from the real part of the FFCF). Unlike
the behavior in the time domain, the results in Figure 3 clearly
show that neglecting the delocalized term leads to rapid
deterioration in the quality of the approximation as the frequency
increases. In fact, this purely quantum-mechanical term, which
is rather small at low frequencies, becomes dominant at high
frequencies! This observation provides a rather unique perspec-
tive on the origin of the quantum enhancement of high-frequency
VER rate constants and points to force delocalization, rather
than nonclassical phase-space sampling, as its origin. In Figure
3, we also show the predictions obtained by using classical

att = 0. Figure 1 clearly indicates that the time-domain behavior mechanics, which deviate by orders of magnitude from the exact
of the real part is dominated by the classical term. It should results at high frequencies. We also show the predictions of
also be noted that the imaginary part in Figure 1, which is purely the best performing harmonic and Egelstaff Q&€Rsf. Table
guantum-mechanical, is completely determined by the delocal- 1). The predictions obtained via these QCFs are seen to differ
ized term. from one another by orders of magnitude at high frequencies,

The FT of the exact (eq 44), and approximate (eq 47), FFCFs and the agreement of neither of them with the exact result is as
are shown in Figure 2 on a semilog plot. The approximate FT good as that obtained via LHALSC—IVR. It should also be
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He: He: He: Hes

A

Figure 4. Schematic view of the linear helium cluster model.

noted that none of the QCFs provide accurate predictions in
the time and frequency domain, simultaneo8lyyhile the
predictions of LHA-LSC—IVR are in excellent agreement with
the exact results in both cases.

B. A Linear Helium Cluster. The second model to be

Shi and Geva
T T
ff — Exact -
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Figure 5. Real part of the (unnormalized) FFCF, as obtained for the
helium cluster model. Shown are the exact quantum mechanical result,

considered has been recently used by Poulsen and co-worklhe classical prediction, and results obtained via E®(R, LHA —

ers$6.120.121in order to examine the performance of another
CMD-based method for calculating the quantum-mechanical
FFCF. In this model, a harmonic diatomic molecule, #s

attached to a wall, and held fixed perpendicular to it (cf. Figure
4). The A atom which is not attached to the wall is coupled to
a short linear chain of four helium atoms, with the last helium
atom held in place. The interaction between the A atom and
the helium atom next to it, as well as the interactions between

the helium atoms, are described by anharmonic Lennard-Jones

(LJ) potentials, which mimic realistic liquid-phase interactions.
Only nearest neighbor interactions are taken into account.
The A, molecule and helium chain are assumed to lie along
the x axis, with the origin positioned on the A atom which is
attached to the wall. The second A atom is positionexh at
req+ 0o, Wherereqis the equilibrium bond length of Aanddo
is the deviation relative to it. The positions of helium atoms 1,
2 and 3 are given byy = req+ OHe-A 1+ 01, X2 = leq+ OHe-A
+ One—He T 62, and X3 = Tleq + Ohe-A T 20He—He T (53
respectively, whereosye—a and ope-pe are the familiar LJ
parameters. The position of the last helium atom is fixeg,at
= feq T OHe-A T 30He-He. The overall potential energy of this
system is given by

V(00,01,0,,05) = %“wzéoz + LJe_A(O—HEHA + 0, —0g) T
VE;EiHe(O—He—He +0,—0)+ VEJEPHE(UHe—He +03—0y) +
VE;e_He(GHeFHe - 63) (49)
whereVyy(r) = 4¢[(olr)'? — (o/r)€]. The parameters used are
the same as these in ref 120ke-a = 4.944 augpe—ne = 4.310
au, eqe-a/ks = 25.1 K, andepe-—ne/ks = 10.2 K. The force on

the diatomic molecule is obtained by linearizing the potential
with respect to the diatomic displacemedi;

= VI'_JHe_A(OHe,A +0y) (50)

The low dimensionality of this system allows for the

LSC—IVR, and the harmonic QCF.
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Figure 6. Contributions of the classical and delocalized initial force
terms to the FFCF within the helium cluster model.

that made by other authors who attempted to apply £8(R

for the calculation of correlation functions in low dimensional
systemd:39.146 Although the LHA leads to a somewhat faster
decay, the overall temporal behavior of the LHASC—IVR
FFCF is rather similar to that of the LS@VR FFCF,
particularly so at short times. It should be noted that the FFCF
in a truly condensed phase system will be characterized by a
relatively short correlation time, during which the LHASC—

IVR approximation seems to be rather reliable. The classical
FFCF and the FFCF obtained by using the harmonic QCF are
also shown in Figure 5. The relatively large deviation between
the classical and quantum-mechanical FFCFs is indicative of
the fact that the “solvent” is pronouncedly quantum-mechanical
in this case, as could be expected from helium at 40 K. Figure
5 also demonstrates the failure of the harmonic QCF, which
can be attributed to the pronouncedly anharmonic nature of the
potential. In Figure 6, we show the contributions of the classical
and quantum-mechanical (“delocalized”) contributions to the
initial force in the LHA-LSC—IVR FFCF. The classical
contribution is seen to dominate, although the delocalized
contribution is significant. It should be remembered however
that considering the contributions of these two terms in the time
domain is probably misleading and that the purely quantum
mechanical delocalized term was seen to dominate the high-
frequency FT of the FFCF in all the other model systems that

calculation of the exact quantum mechanical FFCF (the exact\e have studied (cf. sections 3.A and 3.C).

results given in ref 120 for the same values of the parameters ¢ A Diatomic Solute in a Monatomic Solvent (Breathing
have been adopted for this purpose). Furthermore, a numericallysphere Model).We next consider the VER of a diatomic solute

exact calculation of the Wigner transforms involved in eq 17
via MC sampling is feasible. The real part of the FFCF at 40
K, as obtained for this model by using different methods, is
shown in Figure 5. The LSEIVR FFCF, with or without the
LHA, coincides with the exact FFCF at= 0, and captures the
exact short time behavior rather well. At the same time, the
LSC—IVR and LHA—LSC—IVR FFCFs are seen to decay too
fast and are unable to capture the oscillatory behavior of the
FFCF at longer times. The latter observation is consistent with

in a monatomic solvent. The vibrational mode is assumed to
have a spherical symmetry, and can therefore be viewed as a
“breathing sphere®>178.179The solute-solvent and solvenrt
solvent interactions are treated in terms of spherically symmetric
pair potentials. The overall potential energy is given by

1
V= E,u(uzqz + ;¢s(rjk) + Jz¢(rj01 Q) (51)
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Figure 7. Real part of the FFCF, as obtained for the breathing sphere @
model. Also shown are the classical FFCF and the contributions of the Figure 8. Semilog plot of the FT of the FFCF for the breathing sphere
classical and delocalized initial force terms. model, as obtained from the full version, real part, and imaginary part

of the FFCF in eq 47.
wheregq(r) is the solvent-solvent pair potentiak(r, q) is the

solvent-solute pair potentiaky is the distance between tfta * ‘
andkth solvent atoms, ang is the distance between the center _
of mass of the diatomic solute and tfta solvent atom. The =0
force is obtained by the linearization of the potential with respect g,
to g =2
e ]
v 3 = 5l —LHALSCIVR N\
F=—— = Z—(p (rjo) (52) - Bla}ssiclal tgr{n \
— —0 elocalized term 1
aqlg=0 T 0(!g=0 4 ‘
50 100
To enhance the computational feasibility, calculations were o

performed on a two-dimensional liquid and under the assump- Figure 9. Semilog plot of the classical and delocalized initial force
tion that the solvent atoms and the diatomic solute have the terms to the FT of the FFCF, for the breathing sphere model. It should
same mass, and thad(r) andé(r) are identical and given by a be noted that the contribution of the delocalized term switched sign

LJ potential® ¢qr) = ¢(r) = Vi(r) = 4e[(alr)2 — (alr)e]. from negative at low frequencies to positive at high frequencies. Thus,

: . . what is actually plotted is the logarithm of the absolute value of this
The mass and LJ parameters in the actual simulations werecgntribution.

chosen to coincide with these of liquid neon, namely 2.72

A and e/ks = 47.0 K. The calculations reported below were
performed on a 2D liquid consisting of 81 atoms confined to a I
square, at a reduced density and temperatuge ef 0.70 and =
T* = 0.68, respectively. Periodic boundary conditions and a § 0 _
potential cutoff at 8 have been employed. For reference, we =2 fe—eLraLsCVA
note that the above parameters correspond to a temperature of R o
32 K and density of 9.46 nn? in the case of neon. ol s oo
The real part of the FFCF obtained from eq 37 is compared — Eglastaff QCF
with the classical FFCF in Figure 7. Since the exact quantum- 0 20 40 60 80 100

mechanical result is not known for this case, and experimental ®

; ; ; _Figure 10. Comparison of the predictions of LHALSC—IVR,
re§ults are unavgllable for this pgrtlcylar'mo.dt"—,‘l system, evalu classical mechanics, and various QCFs for the FT of the FFCF.
ation of the quality of the approximation is difficult. However,
the LHA-LSC—IVR FFCF is clearly different from the classical ¢\ o cies. Finally, a comparison with the predictions based
result, thereby suggesting that quantum mechanics imposes d ' Y, b P

pronounced modifications under these conditions. The larger (1)8 (‘:Il'ﬁzsgzli;?i(e)ihsgtl\(;/z::?h\éaéllggzicQaF;ns dI|S_|S|h!50g:vf l'\r;RF igure
initial value of the LHA-LSC—IVR FFCF, which coincides X

with the exact quantum-mechanical value, is attributed to the p_red'i(_:tions grows rapidly as the frequency increasgs,_ with a
nonclassical initial sampling. In this context, it should be noted f(le?;tlif\llcea'g tﬁghggggirgaeln;ncg :??S :E%iece_r:\t/r?at%eedlcgjr;ction
that the force is very sensitive to displacements, and especiallybased on the Egelstaff QCi: is the closest to that gf LHA
so if they are associated with sampling the repulsive region of LSC_IVR at the %i h-frequency region. We view this observa-
the LJ potential. Also shown in Figure 7 are the contributions 9 q y region.

to the real part of the FFCF from the classical and delocalized tion as encouraging, since in the.pa}st, the Egglstgﬁ QCF has
i . L been seen to provide the best predictions in applications to VER.

terms to the force at= 0. Although the major contribution is It should also be noted that a direct calculation of the FT at
seen to arise from the classical term, the contribution of the higher frequencies is very difficult due to numerical noise (cf
delocalized term is by no means negligible. gn q ya : ’

. . section 1). However, assuming that the exponential gap law that

In Figure 8, we present a semilog plot of the FT of the FFCF, emerges at the lower frequencies persists, one can estimate the

as obtained from the full, real part and imaginary part of the g q P ’

LHA—LSC—IVR FFCF in eq 37. The frequency is given in 'dn-frequency FT by extrapolation.
reduced units (for reference, we note th¥&t= 100 corresponds
to 273 cnTl in the case of neon). Very similar predictions are
obtained in all three cases. In Figure 9, we compare the classical The ability of LSC-IVR to capture quantum effects over a
and delocalized contributions to the FT of the LHASC— short period of time suggests that it is well suited for estimating
IVR FFCF (as obtained from the real part). The delocalized relatively short lived quantum-mechanical correlation functions
term is once again seen to be the dominant one at highin condensed phase systems. The validity of this hypothesis has

IV. Conclusions
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. : ; > 7, 1523.
the quantum-mechanicahechanism underlying VER in dif- "~ (40) Brown, J. K.; Harris, C. B.; Tully, J. GI. Chem. Phys1988 89,
ferent systems, and answer the important question of how it 6687. _ ‘
differs from the correspondinglassicalmechanism. To this 94(‘&)25:/‘/“””9”7 R. M. Wilson, K. R.; Hynes, J. T. Phys. Cheml99q

end, further developmgnt of the theory 'presen.ted herein Wlll (42) Whitnell, R. M. Wilson, K. R.: Hynes, J. T.. Chem. Phys1992
be needed. We take a first step toward this goal in the following 96, 5354.
paper, by extending the theory and computational scheme to (43) Figueirido, F. E.; Levy, R. MJ. Chem. Phys1992 97, 703.
diatomic molecular liquids. The resulting LHA.SC—IVR- (44) Jang, S.; Pak, Y.; Voth, G. A. Phys. Chem. A999 103 10289.
based methodology is then applied to the challenging problem (45) Deng, ¥.; Stratt, R. MJ. Chem. Phys2003 117, 1735.
ase _ ay pp _ ging p (46) zwanzig, R.J. Chem. Phys1961, 34, 1931.

of calculating the extremely slow and highly quantum-mechan-  (47) Beme, B. J.; Jortner, J.; Gordon,RChem. PhysL967, 47, 1600.
ical VER rate constant in liquid oxygen. The result is found to Eigg \F;Vedf'eld' A. %lB}i\/' é|19ﬁ7yplﬁ 19-R 1053 89, 728

H : : R angsness, R. K.; Bloch, Phys. Re. , .
be in good agr.eement.vx'nth experiment, thereby providing further (50) Slichter, C. P.Principles of Magnetic Resonanc&pringer-
support for this promising approach to VER. Verlag: Berlin, 1990.
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