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This paper presents the first application of semiclassical methodology to the calculation of vibrational energy
relaxation (VER) rate constants in condensed phase systems. The VER rate constant is treated within the
framework of the Landau-Teller formula and is given in terms of the Fourier transform, at the vibrational
frequency, of the force-force correlation function (FFCF). Due to the high frequency of most molecular
vibrations, predictions based on theclassicalFFCF are often found to deviate by orders of magnitude from
the experimentally observed values. In this paper, we employ a semiclassical approximation for the quantum-
mechanical FFCF, that puts it in terms of a classical-like expression, where Wigner transforms replace the
corresponding classical quantities. The multidimensional Wigner transform is performed via a novel
implementation of the local harmonic approximation (LHA). The resulting expression for the FFCF is exact
at t ) 0, and converges to the correct classical limit whenp f 0. Quantum effects are introduced via a
nonclassical initial sampling of both positions and momenta, as well as by accounting for delocalization in
the calculation of the force att ) 0. The application of the semiclassical method is reported for three model
systems: (1) a vibrational mode coupled to a harmonic bath, with the coupling exponential in the bath
coordinates; (2) a diatomic coupled to a short linear chain of helium atoms; (3) a “breathing sphere” diatomic
in a two-dimensional monatomic Lennard-Jones liquid. Good agreement is found in all cases between the
semiclassical predictions and the exact results, or their estimates. It is also found that the VER of high-
frequency molecular vibrations is dominated by a purely quantum-mechanical term, which vanishes in the
classical limit.

I. Introduction

One of the most fundamental ways in which the environment
affects solution-phase molecular dynamics (MD) is via vibra-
tional relaxation. A typical situation involves energy relaxation
of an excited vibrational mode, in a solute molecule, by energy
transfer to other intermolecular and/or intramolecular accepting
modes.1-10 The rate of vibrational energy relaxation (VER)
provides a sensitive probe of intramolecular dynamics and
solute-solvent interactions, which are known to have a crucial
impact on other important properties, such as chemical reactivity,
solvation dynamics, and transport coefficients.

VER rates have been measured by time-domain pulsed laser
techniques in a variety of hosts, including crystals, liquids, super-
critical fluids, glasses, and proteins.9-39 The observed VER
lifetimes cover a wide range of time scales, extending from
subpicoseconds to minutes, and reflect a rich variety of
intermolecular and/or intramolecular pathways.

Most recent theoretical studies of VER have been based on
either one of the following approaches: (1)the direct approach,
which is based on nonequilibrium MD simulations; (2)the
perturbatiVe approach, which is based on extracting the force-
force correlation function from equilibrium MD simulations.

The direct approachessentially mimics the experimental
measurement of VER. It is based on performing nonequilibrium
classical MD simulations, starting with an excited vibrational
mode, and following its relaxation to equilibrium.40-44 This
approach is particularly useful in the case of low-frequency
vibrational modes and/or high temperatures (pω/kBT , 1), for
the following reasons: (1) A classical description of the relaxing

vibrational mode and the relevant accepting modes is permissible
whenpω/kBT , 1. (2) In these cases, VER is fast due to the
high density of accepting modes with matching frequencies, and
can therefore be directly observed on the time scale accessible
to classical MD simulations.

Unfortunately, low-frequency vibrations are the exception
rather than the rule, and most molecular vibrations are charac-
terized by high frequencies, such thatpω/kBT . 1 even at room
temperature. This situation has two important implications:

• VER can become very slow, due to the very low density of
accepting modes with matching frequencies, and therefore
cannot be simulated on the time scale accessible to classical
MD simulations (e.g., all neat diatomic liquids exhibit VER
lifetimes of microseconds or longer10).

• A classical description of the relaxing vibrational mode and
relevant accepting modes becomes inappropriate and has to be
replaced by a consistent quantum treatment of both.

It should be noted that VER via direct energy transfer to the
solvent is usually slower than intramolecular energy redistribu-
tion (IVR) processes in polyatomic solutes.45 In such cases, VER
to the solvent is usually preceded by a sequence of solvent-
assisted IVR steps. At each step, the solute damps the smallest
possible amount of energy into the solvent, until the intra-
molecular mode with the lowest frequency is reached. This
gateway mode then damps its energy directly into the solvent.
Thus, in polyatomic solutes, the effective frequency may be
lower than that of the mode which is originally excited, such
that VER is faster and quantum effects are less pronounced.45

The perturbatiVe approachprovides an alternative framework
for the calculation of VER rate constants of high-frequency
vibrations.1,10,46,47Its starting point is based on the following* Corresponding author. E-mail: eitan@umich.edu.
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general quantum mechanical Hamiltonian of a harmonic vibra-
tional mode coupled to a bath of accepting modes [here, as in
the rest of this paper, we use boldface symbols for vectors, and
capped symbols (e.g.Â) for operators]:

Here

is the Hamiltonian of the vibrational mode under investigation
(q̂, p̂, µ, andω are the corresponding coordinate, momentum,
reduced mass and frequency, respectively)

is the Hamiltonian of the bath, which consists of the other
intermolecular and intramolecular degrees of freedom [Q̂ )
(Q̂(1), ..., Q̂(N)), P̂ ) (P̂(1), ..., P̂(N)), {M(i)}, andV̂(Q̂) ) V̂(Q̂(1),
..., Q̂(N)) are the corresponding coordinates, momenta, masses,
and potential energy, respectively], and

is the system-bath coupling term. The latter is assumed to be
linearized in the vibrational coordinate,q̂, which implies that
VER takes place via the emission of one vibrational quantum.
For simplicity, we assume that the force on the vibrational mode,
F̂(Q̂), is a function of only the bath coordinates (the treatment
of kinetic coupling terms, which involve momentum-dependent
forces, is deferred to the following paper). It should be noted
that F̂(Q̂) may be, and often is, a highly nonlinear function of
the bath coordinates. The highly nonlinear nature of the force
and the large frequency mismatch between the vibrational mode
and the majority of the accepting modes, implies that the bath
absorbs the energy via a multiphonon-like process.

Given the general Hamiltonian above, the perturbative
approach is based on the following three assumptions: (1)weak
system-bath coupling, to the extent that first-order time-
dependent perturbation theory applies; (2)separation of time
scales, such that the VER lifetime is much longer than the
correlation time of the bath-induced force; (3)the rotating waVe
approximation (RWA), which amounts to the removal of rapidly
oscillating terms and decoupling of population relaxation from
phase relaxation. Under these conditions, the Bloch Redfield
theory (BRT) leads to the following master equation for the
vibrational populations:43,48-58

Here

Here,â ) (kBT)-1, and

is the Fourier transform (FT) of the free bath force-force

correlation function (FFCF)

where〈Â〉0 ) Tr[e-âĤbÂ]/Zb, Zb ) Tr[e-âĤb], δF̂ ) F̂ - 〈F̂〉0,
and

Thus, eq 6 puts the population relaxation rate constants in terms
of the FT, at the vibrational frequency, of the quantum-
mechanical FFCF, which is evaluated with the vibrational mode
frozen at its equilibrium position (q ) 0).

As is well-known, the population dynamics in eq 5 leads to
an exponential decay of the vibrational energy:55,59,60

HereδĤs ) Ĥs - 〈Ĥs〉0, and〈Ĥs〉0 ) pω/2 + pω/(eâpω - 1) is
the vibrational energy at thermal equilibrium. The central
quantity in eq 10 is the VER rate constant, 1/T1, which is given
by theLandau-Teller (LT) formula:10,46,61

It should be noted that althoughC(t) is complex, i.e.,C(t) )
CR(t) + iCI(t) with CR(t) andCI(t) the real and imaginary parts,
respectively, its FT,C̃(ω), is real. Taking advantage of the
general symmetries satisfied byC(t), namelyC(-t) ) C*( t)
andC̃(-ω) ) e-âpωC̃(ω), the VER rate constant in eq 11 can
also be expressed in terms of either the real or imaginary parts
of C(t):

Thus,C̃(ω) can be evaluated from eitherC(t), CI(t), or CR(t).
One difficulty encountered in practical applications of eqs

11 and 12 has to do with the fact that extracting the very small
high-frequency Fourier components of the FFCF can become
extremely difficult due to statistical noise which accompany real-
life simulations. This difficulty is often dealt with by using an
extrapolation of the exponential gap law, which usually emerges
at low frequencies, to much higher frequencies.62,63 A similar
approach is to combine a short time expansion of the FFCF
with a parametrized ansatz that exhibits an exponential gap law
behavior at high frequencies, and whose FT can be calculated
analytically.55,64-71

Another fundamental difficulty is associated with the fact that
the input to eqs 11 and 12 consists of thequantum-mechanical
FFCF, rather than theclassicalFFCF. Unfortunately, the exact
calculation of real-time quantum-mechanical correlation func-
tions for general many-body systems remains far beyond the
reach of currently available computer resources, due to the
exponential scaling of the computational effort with the number
of degrees of freedom (DOF).72 The most popular approach for
dealing with this difficulty is to first evaluate the FT of the
classical FFCF, and then multiply the result by a frequency-
dependentquantum correction factor(QCF),AQ(ω):1,47,60,73-86

Ĥ ) Ĥs + Ĥb + Ĥbs ≡ Ĥ0 + Ĥbs (1)

Ĥs ) p̂2

2µ
+ 1

2
µω2q̂2 (2)

Ĥb ) ∑
i)1

N (P̂(i))2

2M(i)
+ V̂(Q̂(1), ...,Q̂(N)) ) ∑

i)1

N (P̂(i))2

2M(i)
+ V̂(Q̂) (3)

Ĥbs ) - q̂F̂(Q̂(1), ...,Q̂(N)) ) - q̂F̂(Q̂) (4)

d
dt

Pn ) knrn+1Pn+1 + knrn-1Pn-1 - (kn+1rn + kn-1rn)Pn

(5)

knrn+1 ) eâpωkn+1rn ) n + 1
âpω

â
2µ

C̃(ω) (6)

C̃(ω) ) ∫-∞

∞
dt eiωtC(t) (7)

C(t) ) 〈δF̂0(t)δF̂〉0 (8)

δF̂0(t) ) eiĤbt/pδF̂e-iĤbt/p (9)

d

dt
〈δĤs〉 ) ∑

n)0

∞

(n + 1/2)pω
d

dt
Pn ) -

1

T1

〈δĤs〉 (10)

1
T1

) 1 - e-âpω

âpω
â
2µ

C̃(ω) (11)

1
T1

)
tanh(âpω/2)

(âpω/2)
â
µ ∫0

∞
dt cos(ωt)CR(t) ≡

- 1
(âpω/2)

â
µ∫0

∞
dt sin(ωt)CI(t) (12)

C̃(ω) ≈ AQ(ω)C̃Cl(ω) (13)
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Here,C̃Cl(ω) ) ∫-∞
∞ dt eiωtCCl(t), whereCCl(t) ) 〈dF0(t)δF〉0

Cl

is the classicalFFCF (〈‚‚‚〉0
Cl corresponds to averaging over

the classical Boltzmann phase space distribution, and the time
evolution of δF0(t) is governed by classical mechanics). The
important point is thatCCl(t) can be evaluated with relative ease
from classical MD simulations. It should be noted that eq 13
amounts to nothing more than a reformulation of the original
problem, since knowledge of the exact QCF,AQ(ω), is
equivalent to, and as difficult to obtain as, the exact quantum
mechanical FFCF. However, educated guesses ofAQ(ω) can
be introduced, which are based on the general properties of
quantum correlation functions (e.g., detailed balance) and/or the
knowledge of whatAQ(ω) looks like in the very few cases where
it can be obtained explicitly. Table 1 lists some of the more
popular QCFs. However, estimates provided by the various
QCFs can differ by orders of magnitude, and particularly so
when high-frequency vibrations are involved.73,75,83For example,
Egorov et al. have recently estimated 1/T1 for O2 in liquid O2,
at 70 K, and found the following spread of values that were
based on different QCFs: 0.00095 (standard), 0.015 (harmonic),
270 (Egelstaff), and 4030 s-1 (Schofield). (The experimental
value under these conditions is 1/T1 ) 360 s-1.) Similar
disparities have also been observed in other systems.77,83

Several strategies have been proposed in order to address the
challenge of providing an effective, computationally feasible,
and versatile approximate method for calculating quantum-
mechanical real-time correlation functions. These methods are
based on various approaches, including a mixed quantum-
classical treatment,87-92 analytical continuation,66,93-99 centroid
molecular dynamics (CMD),44,100-123 quantum mode coupling
theory,124-126and the semiclassical (SC) approximation.72,127-145

These methods have been applied, with relative success, to a
rather extensive set of systems and processes. However, the
application of these methods to VER in condensed-phase
systems has been rather limited. A CMD-based approach for
calculating VER rate constants has been pursued by Voth and
co-workers44 and Poulsen and co-workers.66,120,121The applica-
tion of CMD to VER is complicated by the fact that the force
in the FFCF is highly nonlinear in the bath coordinates. Hence,
these applications of CMD for calculating the FFCF have been
based on additional approximations whose validity is not always
clear. Applications of the CMD-based approach to model
systems have been rather successful, although further tests will
be required in order to establish the general applicability of this
approach. Rabani and Reichman have proposed a method which
is based on computing the coefficients in the short time
expansion of the FFCF via imaginary-time path integral
simulations.71 This method has been applied, with relative
success, to the case of exponential coupling to a harmonic bath.
Here too, further testing on more realistic systems will be
required in order to establish the general applicability of this
approach.

In the present paper, we consider the application of the
linearized-semiclassical initial-value-representation (LSC-IVR)
approximation for calculating the quantum-mechanical FFCF.

The LSC-IVR approximation has been recently derived by
Miller and co-workers,127,136,142,146-149by linearizing the forward-
backward action in the semiclassical72,127-145,150-158 initial value
representation130-133,144,159-166 expression for a real-time quantum-
mechanical correlation function, with respect to the difference
between the forward and backward trajectories. The resulting
LSC-IVR approximation for a real time correlation function
was found to have the following form:

Here,f is the number of DOF,q0 ) (q0
(1), ...,q0

(f)) andp0 ) (p0
(1),

..., p0
(f)) are the corresponding coordinates and momenta

is the Wigner transform ofÂ [with ∆ ) (∆(1), ..., ∆(f))],167,168

andqt
(Cl) ) qt

(Cl)(q0,p0) andpt
(Cl) ) pt

(Cl)(q0,p0) are propagated
classically with the initial conditionsq0 andp0. We have recently
shown that the very same approximation can also be derived
by linearizing theexactreal-time path integral expression for
the correlation function.169 More specifically, we showed that
it is possible to derive eq 14 without explicitly invoking the
semiclassical approximation.

It should be noted that the Wigner representation has been
considered by many workers in the past as a convinient starting
point for developing approximate treatments of quantum statics
and dynamics.167,168,170-174 In fact, the LSC-IVR approximation
of eq 14 can be obtained from the general theory of Wigner
distributions via the following straightforward procedure:

The first equality in eq 16 is exact, and the second is based on
the p f 0 limit of the equation of motion of [eiĤt/pB̂e-iĤt/p]W.
However, the above procedure may appear somewhat arbitrary
in the sense that [Âe-âĤ]W(q0,p0) is treated exactly to all orders
of p, while [eiĤt/pB̂e-iĤt/p]W is replaced by itsp f 0 limit. In
this respect, the derivation via the linearization of the forward-
backward action appears to provide a more consistent route to
eq 14.

The major advantage of LSC-IVR has to do with its
computational feasibility (although the computation of the
Wigner transform in systems with many DOF is not trivial127).
The approximation also has the attractive features of being exact
at the initial time, at the classical limit, and for harmonic
systems. Its main disadvantage has to do with the fact that it

TABLE 1: Commonly Used Quantum Correction Factors

name AQ(ω) assumption refs

standard 2/(1+ e-âpω) Re[C(t)] ≈ CCl(t) 1, 80, 82
harmonic âpω/(1 + e-âpω) one-phonon process in harmonic bath 60, 79, 80, 81
Schofield eâpω/2 C(t) ≈ CCl(t + ipâ/2) 84
Egelstaff (eâpω/2/C̃Cl(ω) ∫-∞

∞ dt eiωtCCl(xt2 + (âp/2)2) C(t) ≈ CCl(xt(t + iâp/2)) 47, 64, 80, 85, 86

harmonic/Schofield xAQ
harmonic(ω)AQ

Schofield(ω) multiphonon process in harmonic bath 73, 75, 78

Tr(e-âĤeiĤt/pB̂e-iĤt/pÂ) ≈
1

(2πp)f∫dq0∫dp0(Âe-âĤ)W(q0,p0)BW(qt
(Cl),pt

(Cl)) (14)

AW(q0,p0) ) ∫d∆e-ip0∆/p〈q0 + ∆/2| Â|q0 - ∆/2〉 (15)

Tr(e-âĤeiĤt/pB̂e-iĤt/pÂ) )
1

(2πp)f∫dq0∫dp0 [Âe-âĤ]W(q0,p0)[e
iĤt/pB̂e-iĤt/p]W(q0,p0)

≈ 1

(2πp)f∫dq0∫dp0 [Âe-âĤ]W(q0,p0)BW(qt
(Cl),pt

(Cl))

(16)
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can only capture quantum dynamical effects that arise from
short-time interferences between the various trajectories (the
longer time dynamics is purely classical).146 However, it should
be noted that in condensed phase in general, and in the case of
high-frequency VER in particular, the quantities of interest are
often dominated by the short-time dynamics of the correlation
functions.

In the present paper, we introduce a general semiclassical
theory of VER in the condensed phase which is based on the
LSC-IVR approximation. A general LSC-IVR-based method
for calculating VER rate constants in condensed-phase systems
is described in section 2. The application of the method is
demonstrated on several model systems in section 3. The results
are discussed and summarized in section 4.

II. A Semiclassical Theory of Vibrational Energy
Relaxation

The LSC-IVR approximation, eq 14, of the quantum-
mechanical FFCF, eq 8, assumes the following form:

Here

and

A direct calculation of the correlation function in eq 17, in the
case of an anharmonic many-body system, would require the
calculation of the multidimensional Wigner phase-space integral
in eq 19. Unfortunately, it is extremely difficult to perform this
calculation via conventional Monte Carlo (MC) techniques, due
to the oscillatory phase factor, e-iP0∆/p, in the integrand (the
origin of this problem is the same as that of the “sign-problem”
encountered in the calculation of real-time path integrals).

One way of overcoming this problem is by introducing an
approximation that will allow us to perform the integral in eq
19 analytically. To this end, consider the quadratic expansion
of the potential energy of the bath,V(Q) (cf. eq 3), around an
arbitrary pointQ ) Q0:

The quadratic term in eq 20 is next written in terms of mass-

weighted coordinates,{xM(k)[Q(k) - Q0
(k)]}, and Hessian

matrix elements

followed by a transformation to the normal mode representation:

In eq 22

are the mass-wighted normal mode coordinates, and{(Ω(k))2}
are the eigenvalues of the Hessian matrix,{Hk,l}. Rewriting
the linear term in eq 20 and the kinetic energy of the bath in
terms of the normal mode coordinates and momenta yields the
following local harmonic approximation (LHA) of the quantum-
mechanical bath Hamiltonian aroundQ ) Q0:

Here

and

To proceed, we rewrite eq 19 in the following way:

We refrain from applying the LHA to the〈Q0|e-âĤb|Q0〉 factor
preceding the integral (this is essential if the resulting ap-
proximation is to yield the correct classical limit and coincide
with the exact result att ) 0ssee below). However, we do
apply the LHA of eq 24 to the ratio,〈Q0 + ∆/2|e-âĤb|Q0 -
∆/2〉/〈Q0|e-âĤb|Q0〉. It is important to note that the LHA involves
a quadratic expansion only in terms of∆, while any anharmo-
nicity in terms ofQ0 remains fully accounted for. With the help
of the following identity (C is a proportionality constant that
does not depend onQ1 andQ2)

one can then show that, within the LHA

1

2
∑
k)1

N

∑
l)1

N ∂
2V

∂Q(k)
∂Q(l)|

Q)Q0

[Q(k) - Q0
(k)][Q(l) - Q0

(l)] )

1

2
∑
k)1

N

∑
l)1

N

Hk,l( xM(k)[Q(k) - Q0
(k)])(xM(l)[Q(l) - Q0

(l)]) )

1

2
∑
k)1

N

(Ω(k))2[Qn
(k)]2 (22)

Qn
(k) ) ∑

l)1

N

Tl,kxM(l)[Q(l) - Q0
(l)] (23)

Ĥb ≈ ∑
k)1

N 1

2
(P̂n

(k))2 + V(Q0) + ∑
k)1

N

Gn
(k) Q̂n

(k) +
1

2
∑
k)1

N

(Ω(k))2[Q̂n
(k)]2

(24)

P̂n
(k)(Q0) ) ∑

l)1

N

Tl,k(M
(l))-1/2P̂(l) (25)

Gn
(k)(Q0) ) ∑

l)1

N

Tl,k(M
(l))-1/2 ∂V

∂Q(l)|
Q)Q0

(26)

[δF̂e-âĤb]W(Q0,P0) ) 〈Q0|e-âĤb|Q0〉 ∫d∆e-iP0∆/p ×
〈Q0 + ∆/2|e-âĤb|Q0 - ∆/2〉

〈Q0|e-âĤb|Q0〉
δF(Q0 + ∆/2) (27)

〈Q1|e-â[P̂2/2+Ω2Q̂2/2]|Q2〉 ) C exp{- Ω
2p

1
sinh(âpΩ)

×

[cosh(âpΩ)(Q1
2 + Q2

2) - 2Q1Q2]} (28)

C(t) ≈
1
Zb

1

(2πp)N ∫dQ0 ∫dP0 [δF̂e-âĤb]W(Q0,P0)δFW(Qt
(Cl),Pt

(Cl))

(17)

δFW(Qt
(Cl),Pt

(Cl)) ) δF(Qt
(Cl)) (18)

[δF̂e-âĤb]W(Q0,P0) )

∫d∆e-iP0∆/p〈Q0 + ∆/2| e-âĤb|Q0 - ∆/2〉δF(Q0 + ∆/2)

(19)

V(Q) ≈ V(Q0) + ∑
k)1

N ∂V

∂Q(k)|
Q)Q0

[Q(k) - Q0
(k)] +

1

2
∑
k)1

N

∑
l)1

N ∂
2V

∂Q(k)
∂Q(l)|

Q)Q0

[Q(k) - Q0
(k)][Q(l) - Q0

(l)] (20)

Hk,l ) 1

xM(k)M(l)

∂
2V

∂Q(k)
∂Q(l)|

Q)Q0

(21)
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where

and

R(j) in eq 31 is real and positive when [Ω(j)]2 > 0. However, it
should be remembered that some of the normal-mode frequen-
cies may be purely imaginary ([Ω(j)]2 < 0). In such a case,Ω(j)

in eq 31 can be replaced byiΩ(j), whereΩ(j) is real and positive
in the latter. In such a case,pR(j) f Ω(j)cot[âpΩ(j)/2], which is
still real and positive as long asâpΩ(j) > π. In actual
applications, we found that negative values ofR(j) are very rare
(typically showing up less than once per 1000 randomly sampled
configurations). In the applications reported below, it was
assumed that such negative values ofR(j) can be discarded.

The LHA discussed above is similar to that recently proposed
by Ovchinnikov et al. in ref 143. However, the manner in which
it is implemented is rather different. More specifically, the LHA
is used in ref 143 for calculating the off-diagonal element of
the Boltzmann operator,〈Qa|e-âĤ|Qb〉, whereas in our case it
is used in order to calculate theratio of the off-diagonal and
diagonal elements of the Boltzmann operator,〈Q0 + ∆/2|e-âĤb|Q0

- ∆/2〉/〈Q0|e-âĤb|Q0〉 (cf. eq 29). These two versions of the
LHA coincide in the case of a fully harmonic system, but are
distinctly different otherwise. In fact, applying the LHA to the
ratio gives rise to several advantages:

• The approximation that we will obtain below for the FFCF
will reproduce the exact classical limit whenp f 0, which
would not have been the case if we implemented the LHA as
in ref 143.

• The approximation that we will obtain below for the FFCF
will be exact at timet ) 0. This would not have been the case
if we utilized the LHA as in ref 143. This may be important
since the high-frequency FT components of the FFCF are
typically rather sensitive to its behavior at short times.

• Our approach avoids the LHA in the evaluation of
〈Q0|e-âĤb|Q0〉 (see below). In the final result, the initial positions
are sampled based on〈Q0|e-âĤb|Q0〉, such that the anharmonic
nature of the potential is fully taken into account (the LHA
affects the initial sampling of the momenta though).

To proceed, we will also need to simplify the∆-dependence
of the force,δF(Q0 + ∆/2). To this end, we assume thatδF(Q0

+ ∆/2) can also be approximated by its quadratic expansion,
in terms of∆/2, aroundQ ) Q0:

Here

and

Substituting the approximations in eqs 29 and 32 into eq 19,
changing the integration variables from{∆(k)} to {∆n

(k)}, and
performing the Gaussian integral over{∆n

(k)} analytically yield
the following result:

Here

Substituting eq 35 back into eq 17 and changing the
integration variables from{P0

(k)} to {Pn,0
(k)} then lead to the final

form of our approximate expression for the quantum-mechanical
FFCF:

[Note that the Jacobians involved in the two changes
of integration variables,∆ f ∆n and P0 f Pn,0, are
(∏k)1

N M(k))-1/2 and (∏k)1
N M(k))1/2, respectively, and therefore

cancel each other out]. Below, we will refer to the approximation
embodied by eq 37 as the LHA-LSC-IVR approximation.

As noted above, eq 37 is exact at timet ) 0. To see this,
note that the integral overD(Q0,Pn,0) with respect toPn,0

vanishes att ) 0. The only term left is [δF(Q0)]2, which upon
integration overQ0 yields the exact result:

The classical limit of eq 37 also coincides with the exact
classical result. To see this note that, in the classical limit, (1)
〈Q0|e-âĤb|Q0〉/Zb f e-V(Q0)/∫dQ0e-V(Q0), (2) R(j) f 2/âp2 since
âpΩ(j) , 1, such that∑j)1

N (Pn,0
(j) )2/p2R(j) f â∑j)1

N (Pn,0
(j) )2/2 f

â∑j)1
N (P0

(j))2/2M(j), and (3)D(Q0,Pn,0), eq 36, vanishes asp f
0, so one is left with averaging over the time correlation of the
classical forces,δF(Q0)δF(Qt

(Cl)).

〈Q0 + ∆/2|e-âĤb|Q0 - ∆/2〉

〈Q0|e-âĤb|Q0〉
≈ exp[- ∑

j)1

N

R(j)(∆n
(j)/2)2] (29)

∆n
(j) ) ∑

k)1

N

Tk,jxM(k) ∆(k) (30)

R(j) ) Ω(j)

p
coth[âpΩ(j)/2] (31)
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N
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∑
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∑
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2
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∑
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2
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(32)

F′k ) ∂F

∂Q(k)|
Q)Q0

; F′′k,l ) ∂
2F

∂Q(k)
∂Q(l)|

Q)Q0

(33)

F̃′k ) ∑
l)1

N

(M(l))-1/2Tl,kF′l; F̃′′k,l ) ∑
i)1

N

∑
j)1

N

(M(i)M(j))-1/2Ti,lTj,kF′′i,j

(34)

[δF̂e-âĤb]W ) 〈Q0|e-âĤb|Q0〉∏
j)1

N ( 4π

M(j)R(j))1/2

exp[-
(Pn,0

(j) )2

p2R(j) ] ×

[δF(Q0) + D(Q0,Pn,0)] (35)

D(Q0,Pn,0) ) - i∑
k)1

N F̃′kPn,0
(k)

pR(k)
+ ∑

k)1

N F̃′′k,k

4R(k)
- ∑
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N F̃′′k,lPn,0
(k) Pn,0

(l)

2p2R(k)R(l)

(36)

C(t) ≈ ∫dQ0

〈Q0|e-âĤb|Q0〉

Zb

∫dPn,0∏
j)1

N ( 1

R(j)πp2)1/2

×

exp[-
(Pn,0

(j) )2

p2R(j) ][δF(Q0) + D(Q0,Pn,0)]δF(Qt
(Cl)) (37)

1
Zb
∫dQ0 〈Q0|e-âĤb|Q0〉[δF(Q0)]

2 )

1
Zb
∫dQ0 〈Q0| e-âĤb[δF̂]2|Q0〉

)
Tr(e-âĤb[δF̂]2)

Tr(e-âĤb)
(38)
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Quantum effects enter eq 37 in several ways:
• The initial positions are sampled based on the exact quantum

probability density

• The initial (normal-mode) momenta are sampled based on a
nonclassical probability density

It should be noted that{R(j)} and therefore Prob(Pn,0) depend
parametrically onQ0.

• The termD(Q0,Pn,0), eq 36, vanishes at the classical limit
and has no classical analogue. It represents a purely quantum-
mechanical effect that originates from the fact thatF̂ does not
commute withĤb, such that (F̂e-âĤb)W * (F̂)W(e-âĤb)W. One
may therefore view this purely quantum-mechanical term as
representing the delocalized nature of the force att ) 0. We
will therefore refer to its contribution to eq 37 as thedelocalized
term.

It should be noted that the above-mentioned quantum effects
includep to all orders [to this end, note thatR(j) ) Ω(j) coth-
[âpΩ(j)/2]/p, eq 31]. This should be contrasted with the quantum
corrections that would result from expanding the quantum-
mechanical FFCF in powers ofp, to the first nonvanishing order
(for example, see ref 172).

It is also important to note that sinceD(Q0,Pn,0) is complex,
so is the LHA-LSC-IVR FFCF in eq 37. The latter also
satisfies the fundamental quantum-mechanical identityC(-t)
) C*( t), which implies that its Fourier transform,C̃(ω), is real.
This can be seen by using classical-like time reversal symmetry.
More specifically, any forward classical trajectory that starts at
{Q0,Pn,0} at time 0, and ends at{Qt,Pn,t} at time t, may be
reVersedby starting with{Qt, - Pn,t} at time t, propagating
backwardin time, and ending at{Q0, - Pn,0} at time 0. The
latter trajectory is in turn equivalent to starting at{Q0, - Pn,0},
propagatingbackwardin time, and ending at{Q-t ) Qt,Pn,-t

) - Pn,t}. Although the sampling ofPn,0 in eq 37 is
nonclassical, the underlying probability density is still an even
function of Pn,0, and therefore independent of its sign. This
implies that the contributions of the forward and backward
trajectories have the same statistical weight, and that the terms
in the integrand which are even functions ofPn,0 will be
symmetrical with respect to time reversal, while terms which
are odd functions ofPn,0 will be anti-symmetrical with respect
to time reversal. The real and imaginary parts in eq 37 are even
and odd functions ofPn,0, respectively, such thatC(-t) ) C*( t).

Finally, it is also important to note that the approximate
LHA-LSC-IVR FFCF in eq 37does notrigorously satisfy
another fundamental quantum-mechanical identity, namely:
C̃(-ω) ) e-âpωC̃(ω). As a result, substituting the FFCF in eq
37 into eqs 11 and 12 will generally lead to different results.
However, it should be noted that the imaginary part of the FFCF
in eq 37 emerges from the first-order term in the quadratic
expansion of the force in eq 32, whereas the real part originates
from the zero and second-order terms in the same expansion.
Thus, one anticipates that eq 37 provides a better approximation
for CR(t) in comparison toCI(t), and that the best approximation
for the VER rate constant will be obtained by substituting the
real part of the FFCF in eq 37, into the first equality in eq 12.

Substituting theimaginary partof the FFCF in eq 37, into the
second equality in eq 12, is expected to yield a less accurate
approximation. Finally, substituting the complex FFCF in eq
37, into eq 11, is expected to yield an approximation whose
quality is intermediate between these two extremes. This trend
is indeed observed in the examples considered below.

Equation 37 represents the main result of this paper and gives
rise to the following algorithm for calculating the (approximate)
quantum-mechanical FFCF:

1. SampleQ0, with the probability density of eq 39, via an
imaginary-time path integral molecular-dynamics or Monte
Carlo simulation (PIMD and PIMC respectively),175,176 and
calculateF(Q0).

2. Perform a LHA around each value ofQ0, find the normal-
mode frequencies,{Ω(k)}, and transformation matrix,{Tk,l}, and
evaluate{R(k)}, {F̃′k(Q0)} and{F̃′′k,l(Q0)}. The Jacobi method177

has been used for diagonalizing the Hessian matrix in the
applications reported below.

3. MC Sample the initial (normal-mode) momenta,{Pn,0
(k)},

based on the Gaussian probability density in eq 40.
4. CalculateQt

(Cl) via a classical MD simulation, for each set
of initial positions and momenta,Q0 andPn,0, and time correlate
δF(Qt

(Cl)) with δF(Q0) andD(Q0,Pn,0).
In the next section, we present the results of calculations based

on the application of this algorithm to several model systems.

III. Applications

A. Exponential Coupling to a Harmonic Bath. The first
model that we consider involves a bath consisting of uncoupled
harmonic oscillators of different frequencies

and a force which is exponential in the bath coordinates:

where

The fact that the exact quantum-mechanical FFCF can be
obtained analytically for this model63 has established it as a
convenient benchmark.71,83 The exact quantum-mechanical
FFCF is given by

where

andn(ω) ) [exp(âpω) - 1]-1.
It should be noted that the LSC-IVR expression in eq 14 is

exact when the system is harmonic, regardless of whether the
operators in the correlation function are linear in the system
coordinates and/or momenta. Thus, for this model, the FFCF

Prob(Q0) )
〈Q0|e-âĤb|Q0〉

Zb
)

〈Q0|e-âĤb|Q0〉

∫dQ0〈Q0|e-âĤb|Q0〉
(39)

Prob(Pn,0) ) ∏
j)1

N ( 1

R(j)πp2)1/2

exp[-
(Pn,0

(j) )2

p2R(j) ] (40)

Ĥb ) ∑
j)1

N ((P̂(j))2

2M(j)
+

1

2
M(j)(ω(j))2(Q̂(j))2) (41)

F̂(Q̂) ) eR(Q̂) (42)

R(Q̂) ) ∑
j

c(j) x2M(j)ω(j)

p
Q̂(j) (43)

C(t) ) eB(0)(eB(t) - 1) (44)

B(t) ) 〈R̂0(t)R̂(0)〉0 )

∫0

∞
dωΓ(ω){[n(ω) + 1]e-iωt + n(ω)eiωt} (45)

Γ(ω) ) ∑
k

(c(k))2δ(ω - ω(k)) (46)
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in eq 17 actually coincides with the exact FFCF, eq 44.
However, our LHA-LSC-IVR working expression, eq 37, also
involves an approximate quadratic expansion ofδF(Q0 + ∆/2)
(cf. eq 32). The above model therefore provides a convenient
way of testing this approximation. In fact, the fact that the
system is harmonic allows for the analytical calculation of the
FFCF in eq 37. The final result can be written in the following
form:

Here BR(t) and BI(t) are the real and imaginary parts ofB(t),
respectively (cf. eq 45). Interestingly, eq 47 can be obtained
from the exact eq 44 via a second-order expansion in terms of
BI(t).

The real and imaginary parts of the exact (eq 44) and
approximate (eq 47) FFCF for this model are shown in Figure
1. The calculations were performed with a spectral density of
the following form:

and for the following values of the parameters:λ ) 0.20,R )
3 andâpωc ) 4.0. The approximate real and imaginary parts
are found to be in excellent agreement with the exact result.
We also compare the contributions of the two terms that
constitute the real part of the FFCF in eq 47, namely
eBR(0)(eBR(t) - 1) (the “classical term”) and-eBR(t)eBR(0)CI

2(t)/2
(the “delocalized term”). It should be noted that the first term
arises from the classical force att ) 0, δF(Q0), while the second
term arises from the purely quantum mechanical term,D(Q0,Pn,0)
(cf. eq 37). Neglecting the latter implies initial sampling based
on the Wigner transform of the Boltzmann operator, e-âĤb, and
not accounting for delocalization in the evaluation of the force
at t ) 0. Figure 1 clearly indicates that the time-domain behavior
of the real part is dominated by the classical term. It should
also be noted that the imaginary part in Figure 1, which is purely
quantum-mechanical, is completely determined by the delocal-
ized term.

The FT of the exact (eq 44), and approximate (eq 47), FFCFs
are shown in Figure 2 on a semilog plot. The approximate FT

of the FFCF is given as obtained from the full, real part and
imaginary part of the FFCF in eq 47 [for the exact FFCF,C̃(ω)
) 4∫0

∞dt cos(ωt)CR(t)/(1 + e-âpω) ) - 4∫0
∞dt sin(ωt)CI(t)/(1

- e-âpω)]. As expected, the best agreement with the exact result
is obtained when the FT is calculated from the real part of the
FFCF in eq 47. The agreement is excellent in this case, and the
approximation essentially coincides with the exact result.
Deviations from the exact result are observed when the full
FFCF is used, and even more so when the imaginary part of
the FFCF is used. However, even then, the predictions are found
to be in very good agreement with the exact results.

In Figure 3, we compare the contributions of the above-
mentioned classical and delocalized contributions to the FT of
the FFCF (as obtained from the real part of the FFCF). Unlike
the behavior in the time domain, the results in Figure 3 clearly
show that neglecting the delocalized term leads to rapid
deterioration in the quality of the approximation as the frequency
increases. In fact, this purely quantum-mechanical term, which
is rather small at low frequencies, becomes dominant at high
frequencies! This observation provides a rather unique perspec-
tive on the origin of the quantum enhancement of high-frequency
VER rate constants and points to force delocalization, rather
than nonclassical phase-space sampling, as its origin. In Figure
3, we also show the predictions obtained by using classical
mechanics, which deviate by orders of magnitude from the exact
results at high frequencies. We also show the predictions of
the best performing harmonic and Egelstaff QCFs83 (cf. Table
1). The predictions obtained via these QCFs are seen to differ
from one another by orders of magnitude at high frequencies,
and the agreement of neither of them with the exact result is as
good as that obtained via LHA-LSC-IVR. It should also be

Figure 1. Real and imaginary parts of the LHA-LSC-IVR FFCF,
for the case of exponential coupling to a harmonic bath. The exact and
classical results are shown for reference. The contributions of the
classical and delocalized initial force terms to the real part are also
shown.

C(t) ≈ eBR(0)[(eBR(t) - 1) + ieBR(t)BI(t) - 1
2
eBR(t)BI

2(t)] (47)

Γ(ω) ) 2λ ωR

ωc
R+1

exp(- ω2

ωc
2) (48)

Figure 2. Semilog plot of the FT of the exact (eq 44), and approximate
(eq 47) FFCF, for the case of exponential coupling to a harmonic bath.
The approximate FT of the FFCF is given as obtained from the full,
real part and imaginary part of the FFCF in eq 47.

Figure 3. Contributions of the classical and delocalized terms, for the
case of exponential coupling to a harmonic bath. It should be noted
that the contribution of the delocalized term switched sign from negative
at low frequencies to positive at high frequencies. Thus, what is actually
plotted is the logarithm of the absolute value of this contribution. Also
shown are the classical results and predictions based on the harmonic
and Egelstaff QCFs.
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noted that none of the QCFs provide accurate predictions in
the time and frequency domain, simultaneously,83 while the
predictions of LHA-LSC-IVR are in excellent agreement with
the exact results in both cases.

B. A Linear Helium Cluster. The second model to be
considered has been recently used by Poulsen and co-work-
ers66,120,121 in order to examine the performance of another
CMD-based method for calculating the quantum-mechanical
FFCF. In this model, a harmonic diatomic molecule, A2, is
attached to a wall, and held fixed perpendicular to it (cf. Figure
4). The A atom which is not attached to the wall is coupled to
a short linear chain of four helium atoms, with the last helium
atom held in place. The interaction between the A atom and
the helium atom next to it, as well as the interactions between
the helium atoms, are described by anharmonic Lennard-Jones
(LJ) potentials, which mimic realistic liquid-phase interactions.
Only nearest neighbor interactions are taken into account.

The A2 molecule and helium chain are assumed to lie along
the x axis, with the origin positioned on the A atom which is
attached to the wall. The second A atom is positioned atx0 )
req + δ0, wherereq is the equilibrium bond length of A2 andδ0

is the deviation relative to it. The positions of helium atoms 1,
2 and 3 are given byx1 ) req + σHe-A + δ1, x2 ) req + σHe-A

+ σHe-He + δ2, and x3 ) req + σHe-A + 2σHe-He + δ3

respectively, whereσHe-A and σHe-He are the familiar LJ
parameters. The position of the last helium atom is fixed atx4

) req + σHe-A + 3σHe-He. The overall potential energy of this
system is given by

whereVLJ(r) ) 4ε[(σ/r)12 - (σ/r)6]. The parameters used are
the same as these in ref 120:σHe-A ) 4.944 au,σHe-He ) 4.310
au,εHe-A/kB ) 25.1 K, andεHe-He/kB ) 10.2 K. The force on
the diatomic molecule is obtained by linearizing the potential
with respect to the diatomic displacement,δ0:

The low dimensionality of this system allows for the
calculation of the exact quantum mechanical FFCF (the exact
results given in ref 120 for the same values of the parameters
have been adopted for this purpose). Furthermore, a numerically
exact calculation of the Wigner transforms involved in eq 17
via MC sampling is feasible. The real part of the FFCF at 40
K, as obtained for this model by using different methods, is
shown in Figure 5. The LSC-IVR FFCF, with or without the
LHA, coincides with the exact FFCF att ) 0, and captures the
exact short time behavior rather well. At the same time, the
LSC-IVR and LHA-LSC-IVR FFCFs are seen to decay too
fast and are unable to capture the oscillatory behavior of the
FFCF at longer times. The latter observation is consistent with

that made by other authors who attempted to apply LSC-IVR
for the calculation of correlation functions in low dimensional
systems.139,146 Although the LHA leads to a somewhat faster
decay, the overall temporal behavior of the LHA-LSC-IVR
FFCF is rather similar to that of the LSC-IVR FFCF,
particularly so at short times. It should be noted that the FFCF
in a truly condensed phase system will be characterized by a
relatively short correlation time, during which the LHA-LSC-
IVR approximation seems to be rather reliable. The classical
FFCF and the FFCF obtained by using the harmonic QCF are
also shown in Figure 5. The relatively large deviation between
the classical and quantum-mechanical FFCFs is indicative of
the fact that the “solvent” is pronouncedly quantum-mechanical
in this case, as could be expected from helium at 40 K. Figure
5 also demonstrates the failure of the harmonic QCF, which
can be attributed to the pronouncedly anharmonic nature of the
potential. In Figure 6, we show the contributions of the classical
and quantum-mechanical (“delocalized”) contributions to the
initial force in the LHA-LSC-IVR FFCF. The classical
contribution is seen to dominate, although the delocalized
contribution is significant. It should be remembered however
that considering the contributions of these two terms in the time
domain is probably misleading and that the purely quantum
mechanical delocalized term was seen to dominate the high-
frequency FT of the FFCF in all the other model systems that
we have studied (cf. sections 3.A and 3.C).

C. A Diatomic Solute in a Monatomic Solvent (Breathing
Sphere Model).We next consider the VER of a diatomic solute
in a monatomic solvent. The vibrational mode is assumed to
have a spherical symmetry, and can therefore be viewed as a
“breathing sphere”.55,178,179The solute-solvent and solvent-
solvent interactions are treated in terms of spherically symmetric
pair potentials. The overall potential energy is given by

Figure 4. Schematic view of the linear helium cluster model.

V(δ0,δ1,δ2,δ3) ) 1
2

µω2δ0
2 + VLJ

He-A(σHe-A + δ1 - δ0) +

VLJ
He-He(σHe-He + δ2 - δ1) + VLJ

He-He(σHe-He + δ3 - δ2) +

VLJ
He-He(σHe-He - δ3) (49)

F ) - ∂V
∂δ0

|
δ0)0

) V′LJ
He-A(σHe,A + δ1) (50)

Figure 5. Real part of the (unnormalized) FFCF, as obtained for the
helium cluster model. Shown are the exact quantum mechanical result,
the classical prediction, and results obtained via LSC-IVR, LHA -
LSC-IVR, and the harmonic QCF.

Figure 6. Contributions of the classical and delocalized initial force
terms to the FFCF within the helium cluster model.

V )
1

2
µω2q2 + ∑

j<k

φs(r jk) + ∑
j

φ(rj0, q) (51)
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whereφs(r) is the solvent-solvent pair potential,φ(r, q) is the
solvent-solute pair potential,rjk is the distance between thejth
andkth solvent atoms, andrj0 is the distance between the center
of mass of the diatomic solute and thejth solvent atom. The
force is obtained by the linearization of the potential with respect
to q:

To enhance the computational feasibility, calculations were
performed on a two-dimensional liquid and under the assump-
tion that the solvent atoms and the diatomic solute have the
same mass, and thatφs(r) andφ(r) are identical and given by a
LJ potential:180 φs(r) ) φ(r) ) VLJ(r) ) 4ε[(σ/r)12 - (σ/r)6].
The mass and LJ parameters in the actual simulations were
chosen to coincide with these of liquid neon, namelyσ ) 2.72
Å and ε/kB ) 47.0 K. The calculations reported below were
performed on a 2D liquid consisting of 81 atoms confined to a
square, at a reduced density and temperature ofF* ) 0.70 and
T* ) 0.68, respectively. Periodic boundary conditions and a
potential cutoff at 3σ have been employed. For reference, we
note that the above parameters correspond to a temperature of
32 K and density of 9.46 nm-2 in the case of neon.

The real part of the FFCF obtained from eq 37 is compared
with the classical FFCF in Figure 7. Since the exact quantum-
mechanical result is not known for this case, and experimental
results are unavailable for this particular model system, evalu-
ation of the quality of the approximation is difficult. However,
the LHA-LSC-IVR FFCF is clearly different from the classical
result, thereby suggesting that quantum mechanics imposes
pronounced modifications under these conditions. The larger
initial value of the LHA-LSC-IVR FFCF, which coincides
with the exact quantum-mechanical value, is attributed to the
nonclassical initial sampling. In this context, it should be noted
that the force is very sensitive to displacements, and especially
so if they are associated with sampling the repulsive region of
the LJ potential. Also shown in Figure 7 are the contributions
to the real part of the FFCF from the classical and delocalized
terms to the force att ) 0. Although the major contribution is
seen to arise from the classical term, the contribution of the
delocalized term is by no means negligible.

In Figure 8, we present a semilog plot of the FT of the FFCF,
as obtained from the full, real part and imaginary part of the
LHA-LSC-IVR FFCF in eq 37. The frequency is given in
reduced units (for reference, we note thatω* ) 100 corresponds
to 273 cm-1 in the case of neon). Very similar predictions are
obtained in all three cases. In Figure 9, we compare the classical
and delocalized contributions to the FT of the LHA-LSC-
IVR FFCF (as obtained from the real part). The delocalized
term is once again seen to be the dominant one at high

frequencies. Finally, a comparison with the predictions based
on classical mechanics and various QCFs is shown in Figure
10. The deviation between the classical and LHA-LSC- IVR
predictions grows rapidly as the frequency increases, with a
significant enhancement of the LHA-LSC-IVR prediction
relative to the classical one. It is also seen that the prediction
based on the Egelstaff QCF is the closest to that of LHA-
LSC-IVR at the high-frequency region. We view this observa-
tion as encouraging, since in the past, the Egelstaff QCF has
been seen to provide the best predictions in applications to VER.
It should also be noted that a direct calculation of the FT at
higher frequencies is very difficult due to numerical noise (cf.
section 1). However, assuming that the exponential gap law that
emerges at the lower frequencies persists, one can estimate the
high-frequency FT by extrapolation.

IV. Conclusions

The ability of LSC-IVR to capture quantum effects over a
short period of time suggests that it is well suited for estimating
relatively short lived quantum-mechanical correlation functions
in condensed phase systems. The validity of this hypothesis has

Figure 7. Real part of the FFCF, as obtained for the breathing sphere
model. Also shown are the classical FFCF and the contributions of the
classical and delocalized initial force terms.

Figure 8. Semilog plot of the FT of the FFCF for the breathing sphere
model, as obtained from the full version, real part, and imaginary part
of the FFCF in eq 47.

Figure 9. Semilog plot of the classical and delocalized initial force
terms to the FT of the FFCF, for the breathing sphere model. It should
be noted that the contribution of the delocalized term switched sign
from negative at low frequencies to positive at high frequencies. Thus,
what is actually plotted is the logarithm of the absolute value of this
contribution.

Figure 10. Comparison of the predictions of LHA-LSC-IVR,
classical mechanics, and various QCFs for the FT of the FFCF.

F ) -
∂V

∂q|q)0
) - ∑

j

∂φ

∂q|q)0
(rj0) (52)
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been previously demonstrated in the calculation of reaction rate
constants, which depend on the short time dynamics of the flux-
flux correlation function.148,181 In the present paper, we have
proposed an LSC-IVR-based method for calculating the
quantum-mechanical FFCF and thereby the VER rate constant.
It should be noted that the high frequency of most molecular
vibrations can lead to deviations by orders of magnitude between
the corresponding classical and quantum-mechanical VER rate
constants. VER therefore constitutes a prime example for an
inherently nonclassical process that takes place in a condensed
phase environment. The main obstacle involved in applying
LSC-IVR to realistic anharmonic condensed-phase systems
originates from the difficulty of calculating multidimensional
Wigner transforms. This difficulty has been bypassed in the
present study by a new implementation of the LHA, which
allows for an analytical calculation of the Wigner integral. Our
implementation of the LHA has several important advantages:
(1) the approximate FFCF reduces to the exact classical limit
asp f 0; (2) the approximate FFCF is exact att ) 0; (3) the
sampling over the initial positions in the resulting expression
for the FFCF is done on the exactanharmonicpotential.

The proposed method has been successfully applied to three
nontrivial model systems: (1) a vibrational mode coupled to a
harmonic bath, with the coupling exponential in the bath
coordinates; (2) a diatomic molecule coupled to a short chain
of helium atoms that interact via LJ pair potentials; (3) a
spherically symmetric diatomic molecule (a “breathing sphere”),
in a two-dimensional monatomic LJ liquid. The predicted short-
time behavior and high-frequency FT have been found to be in
good agreement with the relevant exact results, or their best
estimates, thereby providing further evidence for the suitability
of the LHA-LSC-IVR approximation for calculating the
quantum-mechanical FFCF.

Another advantage of LSC-IVR, beyond providing a reason-
able quantitative estimate of the quantum-mechanical FFCF, has
to do with its ability to shed light on the origin and significance
of the quantum effects. More specifically, we find that the
quantum enhancement of the VER rate constant is dominated
by a purely quantum mechanical term, which vanishes in the
classical limit (p f 0). This finding calls into question the notion
that the quantum-mechanical FFCF can be generally and reliably
estimated from the classical FFCF (with the exception of the
rather specialized examples in Table 1). Furthermore, LHA-
LSC-IVR provide a reasonable starting point for understanding
the quantum-mechanicalmechanism underlying VER in dif-
ferent systems, and answer the important question of how it
differs from the correspondingclassicalmechanism. To this
end, further development of the theory presented herein will
be needed. We take a first step toward this goal in the following
paper, by extending the theory and computational scheme to
diatomic molecular liquids. The resulting LHA-LSC-IVR-
based methodology is then applied to the challenging problem
of calculating the extremely slow and highly quantum-mechan-
ical VER rate constant in liquid oxygen. The result is found to
be in good agreement with experiment, thereby providing further
support for this promising approach to VER.
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